
Expressions and Scripts

Learning
DigiShow

Robin Zhang and Labs 2025

8

Expressions and Scripts

In our creative workflow, DigiShow mainly acts as a console that can connect to various media
control signals, and completes the production of performance programs with other creative
software through signal mapping. In this process, code programming is generally not required,
which is an important feature of DigiShow. However, DigiShow also provides more possibilities
for users who are accustomed to code programming.

DigiShow 1.5 and later versions support JavaScript /
Qml-based expressions and scripting environments.
Some simple JavaScript programming can greatly
enhance the ability to implement interactive logic in
DigiShow, and can also simplify some functions that
originally required collaboration with external
software to be completed using only DigiShow.

This section is intended for

people with some JavaScript programming skills,

but others can also gain a general understanding.

Signal Input and Output
Expressions

Adding Expressions

You can add a JS expression to any signal bar input or output:

1

2

Click this button to add a JS expression for the
signal input.

Click this button to add a JS expression for the
signal output

The fx text input box appears for entering an
expression

Let's do an experiment.

First, select the Hot Key interface at
the input end of the signal bar.

And, select the Virtual Pipe interface
at the output end of the signal bar,
and select Analog channel 1.

Writing Expressions

In the fx text input box, enter an expression, which is a calculation formula
that can change the value of the signal. The expression can contain some
specific variables, numbers, mathematical operators and functions, etc.
The expression needs to conform to the syntax of the JavaScript language.

1
The default expression in the text input box is
value. Here, value is a variable name, which
refers to the original value of this signal.

In this example, the signal state is 1 when the
Hot Key is pressed, and the signal state is 0
when the key is released.

2
Changing the expression to !value will invert
the value of the signal. In this example, the
signal state is 0 when the Hot Key is pressed
and 1 when the Hot Key is released.

Press Enter to confirm the expression.

The expression is
evaluated when the signal
input changes. When the
expression fails to
evaluate, a warning sign
appears and the signal
retains its original value.

After adding the expression,
a small fx icon appears in
the signal value display

3
Changing the expression to 1 means that the
value of this signal is always 1. In this
example, once the Hot Key is pressed, the
signal state will be locked at 1.

4
Change the expression to value ? !lastValue : null.
In this example, it works as follows: press the button once and the signal
state changes to 1, press the button again and the signal state changes to
0, and continue to press the button to reverse the signal state again.

In this expression, the ? : operator is used to judge the condition and return
different values. Its syntax is: <condition> ? <value 1> : <value 2>
The value 1 will be returned if the condition evaluates to true, and the value
2 will be returned if the condition evaluates to false.

In this example, this expression logic is: when the button is pressed, value
is equal to 1 (true), and !lastValue is returned; when the button is released,
value is equal to 0 (false), and null is returned, that is, the signal state value
does not change.

Writing Expressions

The variable lastValue refers to the signal value
before the input changes, and !lastValue means
reversing the last signal state value.

Writing Expressions

5
Add the expression at the output of the signal bar:
range*Math.random()

The variable range refers to the value range of this
signal. Math.random() is a function provided by
the JS mathematic library that generates a random
decimal between 0 and 1.

6
When you move the fader in the signal bar, or when the input
signal in the signal bar changes and triggers the output signal to
update, the expression will perform calculations and output a
random analog value ranging from 0 to 100%.

To summarize some common variables that can be included in
expressions:

value refers to the original signal value before the expression is evaluated.
range refers to the maximum value of this signal in the value range.
lastValue refers to the last signal value after the expression was evaluated.
null means empty. When the expression returns null, it means that the
signal value does not need to be changed.

The expression can also be optimized to:
value ? range*Math.random() : 0

When linked to the Hot Key signal input, the signal
output generates a random number when the key
is pressed, and the value returns to zero when the
key is released.

Referencing Other Signals

Two common functions that can be used in expressions to obtain the
signal values on other signal bars:

inputValueOf(name) get the input value of the signal bar with title name
outputValueOf(name) get the output value of the signal bar with title name

1 For example, write the expression at the output of the signal bar:
value+outputValueOf('Base Level')

The signal output value needs to be calculated by this
expression. This expression means: the set value of Base Level
needs to be added to the original value of the signal before
outputting it.

2 Add an extra signal bar in the signal link table, select
the Virtual Pipe interface at its output, and select
Analog channel 2. Then change the title of the signal
bar to ‘Base Level’. Now move the fader to set the
Base Level value.

3
When you move the fader in the signal bar, or when
the input signal in the signal bar changes and triggers
the output signal to update, the expression will
perform the calculation and output the calculated
analog value.

Displaying Information Prompt

Two functions that can be used in expressions to show information in the window:

alert(message) show a message dialog box with the text message
toast(message) pop up a notification prompt box with the text message

alert() 和 toast() 也常⽤于在表达式或脚本中进⾏代码调试时的信息提示。

An expression can contain multiple statements,
which need to be separated by semicolons. The
last statement is used to return the value
calculated by the expression. For example:

alert("value = " + value); value

In this example, an alert() message box is
displayed when the signal changes.

And closes it after pressing the OK button.

In this example, a toast() prompt box is
displayed when the signal changes.

The box will disappear after a few seconds.

1

2

User-defined Functions and
Scripting Environment

User-defined Functions

When you need to implement more complex or repetitive logic in
expressions, you usually have to prepare your own functions in
advance and then call them in expressions. At this time, you need
to create a script file for your project so that you can write the
program code of the user-defined functions in it.

When the signal changes at this signal bar output,
executes the expression: onValueChange(value)

In this example, the definition of the
onValueChange() function is saved in an attached
script file bundled with the current project.

A common function that can be
used in scripts:

setOutputValueOf(name, value)
Change the output value of the
signal bar with title name to value.

Creating Script Files

After saving a project in DigiShow, you can create an attached script file for this project.

Click the
Attached Script Files...
item in the menu.

And click the
Create Script button in
the pop-up dialog box

A script file with the same name as the current project and
a .scriptable.txt suffix will be generated in the directory where
the current project file is located. You can open it with a text
editor or a code editor (such as VSCode). The file format
complies with the qml code specification.

2 31

Using Script Files

As long as the DigiShow project is started, the attached script file is also loaded. All functions
and properties (variables) defined in the script can be applied in the signal expressions.

The script file generally contains two special functions:
onStart() is called by the system when the project starts,
and onStop() is called by the system when the project
stops. You can modify the code implementation
according to your needs.

DigishowScriptable {
 function onStart() {
 toast('The scriptable module is started.')
 }
 function onStop() {
 alert('The scriptable module is stopped.')
 }
}

DigiShow script files use the Qml (Qt Modeling Language) scripting
language specification.

In the script, you can use JavaScript to write your own functions in the
DigishowScriptable { … } code segment, and you can also use Qml
syntax to declare properties (variables). In this scripting environment,
you can also call more abundant DigiShow functions, such as:

app.slotTitled('test').setSlotOption('outputSmoothing', 1000)

That is, set the signal mapping parameter Output Smoothing in the
signal bar titled 'test' to 1000 milliseconds

For more information about programming in expressions and script
environments, refer to: https://github.com/robinz-labs/digishow/blob/
master/guides/expression.md

Summary

• Learn to use expressions at the input and output of the signal bar

to implement more interactive logic

• Learn to write user-defined functions in attached script files for

calling in expressions

